HKSA DAN PENAMBATAN MOLEKUL DARI TURUNAN SENYAWA PYRIDO [3,4-b] INDOL YANG BERPOTENSI SEBAGAI SENYAWA ANTIKANKER PANKREAS

Aiyi Asnawi, Septian Riyadi, Ellin Febrina, Rika Rendrika

Sari


Kanker merupakan keadaan dimana sel tubuh tumbuh tidak terkendali. Di Indonesia, kanker pankreas merupakan tumor ganas ketiga pada pria setelah tumor paru dan tumor kolon. Telah disintesis senyawa turunan pyrido [3,4-b] memiliki aktivitas antitumor yang signifikan. Namun sebagian senyawa yang diuji memberikan aktivitas yang moderat dan bahkan ada yang jelek dalam menghambat sel kanker pangkreas. Tujuan dari penelitian ini adalah mengembangkan model persamaan HKSA dari turunan pyrido [3,4-b], merancang senyawa turunannya dari persamaan HKSA, dan mempelajari interaksi molekul ligan hasil desain terhadap protein MDM2 (Mouse double minute 2) sehingga membantu dalam merancang senyawa yang berpotensial anti kanker pankreas yang lebih baik. Dilakukan perhitungan terhadap 12 deskriptor molekul yang mewakili parameter sterik, hidrofobik dan elektronik dan dilanjutkan dengan analisis regresi multi linear dengan SPSS 18.0 digunakan untuk mencari hubungan antara deksriptor molekul dengan aktivitas penghambatan senyawa pada MDM2. Model HKSA terbaik yang diperoleh adalah Log IC50 Prediksi = 3,612 + 91,629 (LUMO) – 21,292 (Gibbs) + 1,317 (Log S) + 0,162 (MR) dengan kriteria statistik R=0,926; R2=0,858; Fhitung/ Ftabel= 3,142; dan q2 = 0,632. Desain senyawa baru dilakukan menggunakan persamaan HKSA tervalidasi dan diperoleh tiga senyawa baru turunan pyrido [3,4-b] yaitu 7, 8, dan 9, yang memiliki aktivitas lebih baik dari senyawa induk. Studi molekular docking menunjukkan bahwa kedua senyawa baru tersebut mampu berinteraksi pada sisi reseptor MDM2 melalui ikatan phi dan ikatan van der Waals dengan residu-residu asam amino krusial reseptor MDM2. Ketiga senyawa desain berpotensi untuk dikembangkan lebih lanjut sebagai anti kanker pangkreas.

Teks Lengkap:

PDF

Referensi


Am. Cancer Soc., Cancer Facts & Figures. Atlanta Am. Cancer Soc. 2013 64 (2013).

Garnett, M. J. et al. Systematic identification of genomic markers of drug sensitivity in cancer cells. Nature 483, 570–5 (2012).

Neve, R. M. et al. A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes. Cancer Cell 10, 515–27 (2006).

Barretina, J. et al. The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature 483, 603–7 (2012).

Grønbaek, K., Hother, C. & Jones, P. A. Epigenetic changes in cancer. APMIS 115, 1039–59 (2007).

Sadikovic, B., Al-Romaih, K., Squire, J. A. & Zielenska, M. Cause and consequences of genetic and epigenetic alterations in human cancer. Curr. Genomics 9, 394–408 (2008).

Wang, H. et al. Identification of the MEK1(F129L) activating mutation as a potential mechanism of acquired resistance to MEK inhibition in human cancers carrying the B-RafV600E mutation. Cancer Res. 71, 5535–45 (2011).

J. Verma, V.M. Khedkar, E.C. Coutinho, 3D-QSAR in drug design - a review, Curr. Top. Med. Chem. 10 (2010) 95e115.

C. Ru, G. Ru, y-Randomization and its Variants in QSPR/QSAR, J. Chem. Inf. Model 47 (2007) 2345e2357.

Christopher Rucker, M.M. Gerta Rucker, Y-Randomization-A useful tool in QSAR Validation,or Folklore? J. Chem. Inf. Model. 47 (2007) 2345e2357.

C. De Kock, P.J. Smith, K. Chibale, AutoQSAR:an automated machine learning tool for best-practice QSAR modeling, Future Med. Chem. 9 (2017) 357e364.

K. Roy, S.,D.R. Kar, Statistical methods in QSAR/QSPR, in: A Primer on QSAr/QSPR Modeling, 2015, pp. 37e59, https://doi.org/10.1007/978-3-319-17281-1.

S. Zhang, A. Golbraikh, S. Oloff, H. Kohn, A. Tropsha, Development, applications, and virtual screening of chemical databases using, J. Chem. Inf. Model. 46 (2006) 1984e1995.

A. Vuorinen, D. Schuster, Methods for generating and applying pharmacophore models as virtual screening filters and for bioactivity profiling, Methods (2014), https://doi.org/10.1016/j.ymeth.2014.10.013.

A. Golbraikh, A. Tropsha, Beware of q 2 , J. Mol. Graph. Model. 20 (2002) 269e276.

Momand, J., Zambetti, G. P., Olson, D. C., George, D., and Levine, A. J. The mdm-2 oncogene product forms a complex with the p53 protein and inhibits p53-mediated transactivation. Cell, 69: 1237–1245, 1992.

Cahilly-Snyder, L., Yang-Feng, T., Francke, U., and George, D. L. Molecular analysis and chromosomal mapping of amplified genes isolated from a transformed mouse 3T3 cell line. Somatic Cell Mol. Genet., 13: 235–244, 1987.

Patil, S.A., Addo, J.K., Deokar, H., Sun, S., Wang, J., Li, W., Suttle, D.P., Wang, W., Zhang, R., dan Buolamwini, J.K. (2017) : Synthesis, Biological Evaluation and Modeling Studies of New Pyrido [3,4-b] indole Derivatives as Broad-Spectrum Potent Anticancer Agents, Drug Des 6: 143. doi: 10.4172/2169-0138.1000143.

Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi, R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ. 2009. Gaussian 09, Revision B.01. Wallingford CT (USA): Gaussian Inc

Golbraikh A, Tropsha A. 2002. Beware of q2! Journal of Molecular Graphics and Modeling. 20(4): 269–276.

Golbraikh A, Shen M, Xiao Z, Xiao YD, Lee KH, Tropsha, A. 2003. Rational selection of training and test sets for the development of validated QSAR models. Journal of Computer Aided Moelcular Design. 17: 241–253.

Morris GM, Goodsell DS, Halliday RS, Huey R, Hart WE, Belew RK, Olson AJ. 1998. Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. Journal of Molecular Modeling. 19: 1639–1662.

Philipp Holzer, Keiichi Masuya, Pascal Furet, Joerg Kallen, Therese Valat-Stachyra, Stéphane Ferretti, Joerg Berghausen, Michèle Bouisset-Leonard, Nicole Buschmann, Carole Pissot-Soldermann, Caroline Rynn, Stephan Ruetz, Stefan Stutz, Patrick Chène, Sébastien Jeay, and Francois Gessier, Discovery of a Dihydroisoquinolinone Derivative (NVP-CGM097): A Highly Potent and Selective MDM2 Inhibitor Undergoing Phase 1 Clinical Trials in p53wt Tumors, Journal of Medicinal Chemistry, 2015 58 (16), 6348-6358, DOI: 10.1021/acs.jmedchem.5b00810

Dassault Systèmes BIOVIA, Discovery Studio Visualizer, San Diego: Dassault Systèmes, [2016].

B Vijay Raj, MV Raghavendra Rao, Yogesh Acharya, Structure based virtual screening, docking and molecular dynamic simulation studies to identify potent mdm2-p53 inhibitors: Future implications for cancer therapy, Acta Medica International, 2017, 4(1):11-21. DOI:10.5530/ami.2017.4.3




DOI: https://doi.org/10.33024/jfm.v3i2.3422

Refbacks

  • Saat ini tidak ada refbacks.


##submission.copyrightStatement##